Thoughts on Massively Scalable Gaussian Processes

نویسندگان

  • Andrew Gordon Wilson
  • Christoph Dann
  • Hannes Nickisch
چکیده

We introduce a framework and early results for massively scalable Gaussian processes (MSGP), significantly extending the KISS-GP approach of Wilson and Nickisch (2015). The MSGP framework enables the use of Gaussian processes (GPs) on billions of datapoints, without requiring distributed inference, or severe assumptions. In particular, MSGP reduces the standard O(n) complexity of GP learning and inference to O(n), and the standard O(n) complexity per test point prediction to O(1). MSGP involves 1) decomposing covariance matrices as Kronecker products of Toeplitz matrices approximated by circulant matrices. This multi-level circulant approximation allows one to unify the orthogonal computational benefits of fast Kronecker and Toeplitz approaches, and is significantly faster than either approach in isolation; 2) local kernel interpolation and inducing points to allow for arbitrarily located data inputs, and O(1) test time predictions; 3) exploiting block-Toeplitz Toeplitz-block structure (BTTB), which enables fast inference and learning when multidimensional Kronecker structure is not present; and 4) projections of the input space to flexibly model correlated inputs and high dimensional data. The ability to handle many (m ≈ n) inducing points allows for near-exact accuracy and large scale kernel learning.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complete convergence of moving-average processes under negative dependence sub-Gaussian assumptions

The complete convergence is investigated for moving-average processes of doubly infinite sequence of negative dependence sub-gaussian random variables with zero means, finite variances and absolutely summable coefficients. As a corollary, the rate of complete convergence is obtained under some suitable conditions on the coefficients.

متن کامل

Scalable Nonparametric Bayesian Inference on Point Processes with Gaussian Processes

In this paper we propose an efficient, scalable non-parametric Gaussian process model for inference on Poisson point processes. Our model does not resort to gridding the domain or to introducing latent thinning points. Unlike competing models that scale as O(n) over n data points, our model has a complexity O(nk) where k n. We propose a MCMC sampler and show that the model obtained is faster, m...

متن کامل

Scalable Verification of Markov Decision Processes

Markov decision processes (MDP) are useful to model concurrent process optimisation problems, but verifying them with numerical methods is often intractable. Existing approximative approaches do not scale well and are limited to memoryless schedulers. Here we present the basis of scalable verification for MDPSs, using an O(1) memory representation of history-dependent schedulers. We thus facili...

متن کامل

Scalable Log Determinants for Gaussian Process Kernel Learning

For applications as varied as Bayesian neural networks, determinantal point processes, elliptical graphical models, and kernel learning for Gaussian processes (GPs), one must compute a log determinant of an n× n positive definite matrix, and its derivatives – leading to prohibitive O(n) computations. We propose novel O(n) approaches to estimating these quantities from only fast matrix vector mu...

متن کامل

Scalable Source Localization with Multichannel Alpha-Stable Distributions

In this paper, we focus on the problem of sound source localization and we propose a technique that exploits the known and arbitrary geometry of the microphone array. While most probabilistic techniques presented in the past rely on Gaussian models, we go further in this direction and detail a method for source localization that is based on the recently proposed α-stable harmonizable processes....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1511.01870  شماره 

صفحات  -

تاریخ انتشار 2015